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Abstract

The new paradigm of test-time scaling has yielded remarkable breakthroughs in
Large Language Models (LLMs) (e.g. reasoning models) and in generative vision
models, allowing models to allocate additional computation during inference to
effectively tackle increasingly complex problems. Despite the improvements of this
approach, an important limitation emerges: the substantial increase in computation
time makes the process slow and impractical for many applications. Given the
success of this paradigm and its growing usage, we seek to preserve its benefits
while eschewing the inference overhead. In this work we propose one solution to
the critical problem of integrating test-time scaling knowledge into a model during
post-training. Specifically, we replace reward guided test-time noise optimization
in diffusion models with a Noise Hypernetwork that modulates initial input noise.
We propose a theoretically grounded framework for learning this reward-tilted
distribution for distilled generators, through a tractable noise-space objective that
maintains fidelity to the base model while optimizing for desired characteristics.
We show that our approach recovers a substantial portion of the quality gains from
explicit test-time optimization at a fraction of the computational cost. Code is
available at https://github.com/ExplainableML/HyperNoise.

1 Introduction

Recently, inference-time scaling has made remarkable breakthroughs in Large Language Models [24,
36, 78] and generative vision models, enabling models to spend more computation during inference
to solve complex problems effectively. Drawing from the success and growing usage of test-time
compute in LLMs, several methods have attempted to apply similar ideas in the context of diffusion
models for generation [6, 18, 55, 61, 62, 75, 82, 84, 86, 87, 91]. The goal of this process is to spend
additional compute during inference to obtain generations that better reflect desired output properties.

Diffusion model test-time techniques that optimize the initial noise or intermediate steps of the
diffusion process, often guided by feedback from pre-trained reward models [44, 50, 95, 96, 97, 101],
have demonstrated significant promise in improving critical attributes of the generated outputs, such
as prompt following, aesthetics, quality and composition [9, 18, 40, 55, 61, 62, 91]. These methods
generally fall into two broad categories: gradient-based optimization, which typically requires
substantial GPU memory for backpropagation through the full model [6, 18, 42, 62, 91], and gradient-
free optimization, which often necessitates a very large number of function evaluations (NFEs),
sometimes thousands, of the computationally expensive denoising network [40, 55, 87]. While
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Figure 1: The same initial random noise is used for the base generation and the initialization of noise
hypernetwork. HyperNoise significantly improves upon the initially generated image with respect to
both prompt faithfulness and aesthetic quality for both SANA-Sprint and FLUX-Schnell.

both strategies can effectively boost output quality, they introduce considerable latency (exceeding
10 minutes for one generation), severely limiting their practical utility, particularly for real-time
applications. This is an instantiation of a global problem of test-time scaling methods that we seek to
tackle in this work. The core hypothesis of our work is whether, it is possible to capture a portion of
test-time scaling benefits by integrating this knowledge into a neural network during training time?

To address this, one might consider directly fine-tuning the diffusion model using reward signals [10,
12, 15, 49, 69, 83, 85, 102] or with Direct Preference Optimization (DPO) [30, 41, 48, 72, 92]. The
objective here can be formulated as learning a tilted distribution (Equation 4), which upweights
samples with high reward while maintaining fidelity to a base model’s distribution. These methods
are usually expensive to train due to the need for backpropagation through the sampling process.
Instead, one might consider directly fine-tuning a step-distilled generative model to learn this target
distribution. However, this approach typically involves a KL regularization to the base model that
is intractable for distilled models. An imbalance or poor estimation of this can lead to the model
"reward-hacking", superficially maximizing the reward metric while significantly deviating from the
desired underlying data distribution, thus not achieving the genuine desired improvements.

In this work, we propose a different path to realize the benefits of the target tilted distribution
(Equation 3), particularly for step-distilled generative models. Our core hypothesis is that instead
of modifying the parameters of the base generator, we can achieve the desired output distribution
by learning to predict an optimal initial noise distribution. We first show that such an optimal tilted
noise distribution p⋆0 exists (characterized by Equation 5). When samples from this p⋆0 are passed
through the frozen generator, they naturally produce outputs that are distributed according to the
target data-space tilted distribution. To learn this tilted noise distribution, we introduce a lightweight
network, fϕ, that transforms standard Gaussian noise into a modulated, improved noise latent. The
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crucial advantage of this approach lies in its optimization objective. In particular, the regularization
term, a KL divergence between the modulated noise distribution and the standard Gaussian prior,
is defined entirely in the noise space. We show that this noise-space KL divergence can be made
tractable and effectively approximated by an L2 penalty on the magnitude of the noise modification.

This lightweight network forms the core of our approach, which we term Noise Hypernetworks. It
functions akin to a hypernetwork [2, 26, 27, 35, 59, 67, 89, 99] as rather than generating the final
image, it produces a specific, optimized starting latent for the main frozen generative model. This
effectively guides the output of the base model without any changes to its parameters. Broadly, a
hypernetwork is an auxiliary model trained to generate crucial inputs or parameters of a primary
model. Our fϕ embodies this concept by learning to predict the optimized initial noise as input to the
frozen generator. Consequently, our proposed approach is effectively training a Noise Hypernetwork
to perform the task of test-time noise optimization, by learning to directly output an optimized noise
latent in a single step sidestepping the need for expensive, iterative test-time optimization.

Our practical implementation of the noise hypernetwork utilizes Low-Rank Adaptation (LoRA),
ensuring it remains parameter-efficient and adds negligible computational cost during inference. We
apply our method to text-to-image generation, conducting evaluations with an illustrative "redness"
reward task to demonstrate core mechanics, as well as complex alignments using sophisticated
human-preference reward models. We demonstrate the efficacy of our approach by applying it
to distilled diffusion models SD-Turbo [77], SANA-Sprint [11], and FLUX-Schnell. Overall, our
experiments show that we can recover a substantial portion of the quality gains from explicit test-time
optimization at a fraction of the computational inference cost. In summary, our contributions are:

1. We introduce HyperNoise, a novel framework that learns to predict an optimized initial noise for a
fixed distilled generator, effectively moving test-time noise optimization benefits and computa-
tional costs into a one-time post-training stage.

2. We propose the first theoretically grounded framework for learning the reward tilted distribution
of distilled generators, through a tractable noise-space objective that maintains fidelity to the base
model while optimizing for desired characteristics.

3. We demonstrate through extensive experiments significant enhancements in generation quality
for state-of-the-art distilled models with minimal added inference latency, making high-quality,
reward-aligned generation practical for fast generators.

2 Background

Preliminaries. Recent generative models are based on a time-dependent formulation between a
standard Gaussian distribution x0 ∼ p0 = N (0, I) and a data distribution x1 ∼ pdata. These models
define an interpolation between the initial noise and the data distribution, such that

xt = αtx0 + σtx1, (1)

where αt is a decreasing and σt is an increasing function of t ∈ [0, 1]. Score-based diffusion [29, 39,
43, 79, 80] and flow matching [3, 51, 52] models share the observation that the process xt can be
sampled dynamically using a stochastic or ordinary differential equation (SDE or ODE). The neural
networks parameterizing these ODEs/SDEs are trained to learn the underlying dynamics, typically by
predicting the score of the perturbed data distribution or the conditional vector field. Generating a
sample then involves simulating this learned differential equation starting from x0 ∼ p0.

Step-Distilled Models. The iterative simulation of such ODEs/SDEs often requires numerous steps,
leading to slow sample generation. To address this latency, distillation techniques have emerged
as a powerful approach. The objective is to train a "student" model that emulates the behavior of
a pre-trained "teacher" model (which performs the full ODE/SDE simulation) but achieves this
with drastically fewer, or even a single, evaluation step(s). Prominent distillation methods such as
Adversarial Diffusion Distillation [77] or Consistency Models [54, 81] have enabled the development
of highly efficient few-step or one-step generative models, like SD/SDXL-Turbo [77] and SANA-
Sprint [11]. In this work, we denote such a distilled generator by gθ. The significantly reduced
number of sampling steps in these distilled models makes them more amenable to various optimization
techniques and practical for real-time applications, which is why they are the focus of our work.

Test-Time Noise Optimization Test-time optimization techniques aim to improve pre-trained
generative models on a per-sample basis at inference. One prominent gradient-based strategy is
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test-time noise optimization [6, 25, 42, 62, 84, 91]. Given a pre-trained generator gθ (which could
be a multi-step diffusion or flow matching model), this approach optimizes the initial noise x0 for
each generation instance. The objective is to find an improved x⋆

0 that maximizes a given reward
r(gθ(x0)), often subject to regularization and can be formulated as

x⋆
0 = argmax

x0

(r(gθ(x0))− Reg(x0)), (2)

where Reg(x0) is a regularization term designed to keep x⋆
0 within a high-density region of the

prior noise distribution p0, thus ensuring the generated sample gθ(x
⋆
0) remains plausible. ReNO [18]

adapted this framework for distilled generators gθ, enabling more efficient test-time optimization
compared to full diffusion models. However, this per-sample optimization still incurs significant
computational costs at inference, involving multiple forward and backward passes, and increased
GPU memory. This inherent latency and computational burden motivate the exploration of methods
that can imbue models with desired properties without per-instance test-time optimization.

Reward-based Fine-tuning and the Tilted Distribution To circumvent the per-sample inference
costs associated with test-time optimization, an alternative paradigm is to directly fine-tune the
generative model gθ to align with a reward function. We consider the pre-trained base distilled
diffusion model gθ, which transforms an initial noise sample x0 into an output sample x = gθ(x0).
The distribution of these generated output samples is the pushforward of p0 by gθ, which we denote
as pbase = (gθ)♯p0. Given gθ and a differentiable reward function r(x) : Rd → R that quantifies the
preference of samples x, our objective is to learn the so called tilted distribution

p⋆(x) ∝ pbase(x) exp(r(x)). (3)

This target distribution is defined to upweight samples with high rewards under r(x) while staying
close to the original pbase(x). We would like to learn p⋆(x) by minimizing the KL divergence
DKL(p

ϕ∥p⋆). Here, pϕ is the distribution generated by modifying the base process using trainable
parameters ϕ. e.g. ϕ could correspond to a fine-tuned version of θ. This objective can be decomposed
such that

min
ϕ

DKL(p
ϕ∥p⋆) = min

ϕ
DKL(p

ϕ∥pbase)− Ex∼pϕ [r(x)], (4)

where we omit the normalization constant of p⋆(x) which is constant w.r.t. ϕ (see Appendix ??).
This objective encourages the learned model pϕ to generate high-reward samples while regularizing
its deviation from the original base distribution pbase.

Challenges in Direct Reward Fine-tuning of Distilled Models Directly optimizing Equation 4
by fine-tuning the parameters of a distilled, e.g. one-step, gθ poses significant challenges. The
term DKL(p

ϕ∥pbase) requires evaluating the densities of pϕ and pbase. For typical neural network
generators, these densities involve Jacobian determinants through the change-of-variable formula,
which are often intractable or computationally prohibitive to compute for high-dimensional data [65].
Previously, a line of work has analyzed fine-tuning Diffusion [83, 85] and Flow matching [15] models
based on Equation 4 through the lens of Stochastic Optimal Control. However, this formulation relies
on dynamical generative models (SDEs) and its application to distilled models is not straightforward,
as these often lack the explicit continuous-time dynamical structure (e.g., an underlying SDE or ODE)
that these fine-tuning techniques leverage.

3 Noise Hypernetworks

Given the challenges in directly fine-tuning gθ, we introduce Noise Hypernetworks (HyperNoise), a
novel theoretically grounded approach to learn p⋆ for distilled generative models. The core idea is to
learn a new distribution for the initial noise, pϕ0 , such that samples x̂0 ∼ pϕ0 , when passed through
the fixed generator gθ, produce outputs x = gθ(x̂0) that are effectively drawn from the target tilted
distribution p⋆(x) (Equation 3). Instead of modifying the parameters θ of the base generator, we keep
gθ fixed. This requires pϕ0 to approximate an optimal modulated noise distribution, p⋆0. This tilted
noise distribution, which precisely steers gθ to p⋆, can be characterized by (Appendix A.2)

p⋆0(x0) ∝ p0(x0) exp(r(gθ(x0))). (5)

To realize the modulated noise distribution pϕ0 , we parameterize it using a learnable noise hyper-
network fϕ (with parameters ϕ). This network defines a transformation Tϕ that maps initial noise
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Figure 2: Illustration of our proposed HyperNoise approach. During training, the LoRA parameters
are trained to predict improved noises and are optimized by reward maximization subject to KL
regularization. During inference, the noise hypernetwork directly predicts the improved noise
initialization which is used for the final generation.

samples x0 ∼ p0 to modulated samples x̂0 via a residual formulation such that

x̂0 = Tϕ(x0) := x0 + fϕ(x0). (6)

The distribution of these modulated samples, pϕ0 , is thus the pushforward of p0 by Tϕ, i.e.,
pϕ0 = (Tϕ)♯p0. We propose to train the parameters ϕ of the noise modulation network fϕ by mini-
mizing the KL divergence DKL(p

ϕ
0∥p⋆0). This can be shown to be equivalent to minimizing the loss

function
Lnoise(ϕ) = DKL(p

ϕ
0∥p0)− Ex̂0∼pϕ

0
[r(gθ(x̂0))]. (7)

Analogously to Equation 4, this objective encourages pϕ0 (and thus fϕ) to produce initial noise
samples x̂0 that effectively steer the fixed generator gθ towards high-reward outputs x. The KL term
DKL(p

ϕ
0∥p0) regularizes this steering by ensuring pϕ0 remains close to the original noise distribution

p0. Next, we show that in contrast to Equation 4, Lnoise can be made tractable.

3.1 KL Divergence in Noise Space

The resulting KL divergence term DKL(p
ϕ
0∥p0) is derived in detail in Appendix A. The derivation

involves the change of variables formula, simplification of Gaussian log-PDF terms, and an application
of Stein’s Lemma. This leads to the following expression for the KL divergence:

DKL(p
ϕ
0∥p0) = Ex0∼p0

[ 12∥fϕ(x0)∥2 + Tr(Jfϕ(x0))− log |det(I + Jfϕ(x0))|], (8)

where Jfϕ(x0) is the Jacobian of fϕ with respect to x0. Let E(A) := Tr(A)− log |det(I+A)|. Then
Equation 8 can be rewritten as DKL(p

ϕ
0∥p0) = Ex0∼p0

[ 12∥fϕ(x0)∥2 + E(Jfϕ(x0))]. To simplify this
expression, we analyze the error term E(Jfϕ(x0)). The following Theorem provides a bound on this
term under a Lipschitz assumption on fϕ.
Theorem 1 (Bound on Log-Determinant Approximation Error). Let A = Jfϕ(x0) be the d × d
Jacobian matrix of fϕ(x0). Assume fϕ is L-Lipschitz continuous, such that its Lipschitz constant
L < 1. This implies that the spectral radius ρ(A) ≤ L < 1. Then, the error term E(A) =
Tr(A)− log |det(I +A)| is bounded by

|E(A)| ≤ d(− log(1− L)− L). (9)

See Appendix A.3 for the full proof. Theorem 1 shows that if the Lipschitz constant L of fϕ is
sufficiently small (specifically, L < 1), the error term |E(A)| is bounded. For small L, − log(1−L)−
L ≈ L2/2, making the bound approximately dL2/2. Thus, the expected error Ex0∼p0 [E(Jfϕ(x0))]
becomes negligible if L is kept small. Under this condition, we can approximate the KL divergence
with

DKL(p
ϕ
0∥p0) ≈ Ex0∼p0

[ 12∥fϕ(x0)∥2]. (10)
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This approximation simplifies the KL divergence term in our objective to a computationally tractable
L2 penalty on the magnitude of the noise modification fϕ(x0). Substituting it into our initial noise
modulation objective (Equation 7), we arrive at the final loss to minimize

Lnoise(ϕ) = Ex0∼p0 [
1
2∥fϕ(x0)∥2 − r(gθ(x0 + fϕ(x0)))]. (11)

Connection to test-time noise optimization. Our proposed method addresses the same fundamental
goal as Noise Optimization (Equation 2) of steering generation towards high-reward outputs while
maintaining fidelity to the base distribution. However, instead of performing iterative optimization for
each sample at inference time, we amortizes this optimization into a one-time post-training process.
By learning the noise modulation network fϕ, we effectively pre-computes a general policy for
transforming any initial noise x0. Consequently, steered generation with HyperNoise remains highly
efficient at inference, requiring only a single forward pass through fϕ and then gθ.

Theoretical Justification via Data Processing Inequality. The KL divergence term DKL(p
ϕ
0∥p0) in

our objective (Equation 7) provides a principled way to regularize the output distribution in data space.
The Data Processing Inequality (DPI) [13] states that for any function, such as our fixed generator gθ,
the KL divergence between its output distributions is upper-bounded by the KL divergence between
its input distributions. In our context, where pϕ0 = (Tϕ)♯p0 is the distribution of modulated noise
x̂0 = Tϕ(x0) and pbase = (gθ)♯p0 is the base output distribution, the DPI implies

DKL(p
ϕ
0∥p0) ≥ DKL((gθ)♯p

ϕ
0∥(gθ)♯p0). (12)

Thus, by minimizing DKL(p
ϕ
0∥p0) in the noise space, we effectively minimizes an upper bound on

the KL divergence between the steered output distribution (gθ)♯p
ϕ
0 and the original base distribution

pbase. This offers a theoretically grounded mechanism for controlling the deviation of the generated
data distribution, complementing the empirical reward maximization, even when direct computation
of data-space KL divergences (as in Equation 4) is intractable.

3.2 Effective Implementation

To implement Noise Hypernetworks efficiently and ensure stable training, we adopt several key
strategies for the noise modulation network fϕ and the training process, summarized in Algorithm 1.
Note that our training algorithm (Equation 11) does not require target data samples from p⋆, pbase,
nor pdata. It only requires: (1) base noise samples x0 ∼ p0, (2) the fixed generator gθ, and (3) the
reward function r(·). For conditional fϕ(x0|c), it additionally requires the conditions c.

Algorithm 1 HyperNoise
1: Input: gθ (distilled generative Model), r (reward

fn), Optional C = {ci}Ni=1 (condition dataset)
2: Initialize Noise Hypernetwork fϕ(·) = 0 through

LoRA weights ϕ applied on top of gθ
3: while training do
4: Sample noise x0 ∼ N (0, I), c = ∅
5: if C then
6: Sample condition c ∼ C
7: Predict modulated noise ∆x0 = fϕ(x0, c)
8: Generate x1 = gθ(x0 +∆x0, c)
9: Compute Loss Lnoise(ϕ) =

1
2∥∆x0∥2 − r(x1)

10: Gradient step on ∇ϕLnoise(ϕ)
11: return Noise Hypernetwork LoRA weights ϕ

Lightweight Noise Hypernetwork with
LoRA. The noise modulation network fϕ
is instantiated by reusing the architecture
of the pre-trained generator gθ and mak-
ing it trainable via Low-Rank Adaptation
(LoRA) [31]. The original gθ weights are
frozen, and only the LoRA adapter param-
eters in fϕ are learned. This approach is
parameter-efficient, reducing memory and
computational overhead as we only need
to keep gθ in memory once. It also allows
fϕ to inherit useful inductive biases from
gθ’s architecture. For conditional mod-
els gθ(·|c), fϕ(x0|c) can similarly leverage
learned conditional representations by ap-
plying LoRA to conditioning pathways, e.g.
the learned text-conditioning of a text-to-image model.

Initialization. We initialize fϕ such that its output fϕ(·) = 0. For LoRA, this is achieved
by setting the second LoRA matrix (often denoted B) to zero. This ensures that initially
x̂0 = x0 + fϕ(x0) ≈ x0, making pϕ0 ≈ p0. This is crucial for training stability and supports the
validity of the L2 approximation for DKL(p

ϕ
0 |p0) (Equation 10) from the start of training. We modify

the final layer of fϕ to output only the LoRA-generated perturbation, not adding to any frozen base
weights such that at initialization fϕ(·) = 0, which significantly stabilizes training.
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Figure 3: An illustrative example of optimizing for learning the tilted distribution with an image
redness reward. We show direct LoRA fine-tuning of SANA-Sprint [11] in comparison to training
a noise hypernetwork with our proposed objective. Notably, when training with our objective, the
model optimizes the desired reward while staying considerably closer to pbase, as showcased by the
model not diverging from the image manifold, unlike in direct LoRA fine-tuning.

4 Experiments

Our experimental evaluation is designed to assess the efficacy of our objective for the popular setting
of text-to-image (T2I) models. We benchmark the noise hypernetwork against established methods,
primarily direct LoRA fine-tuning of the base generative model [69], and investigate its capacity
to match or recover the performance gains typically associated with test-time scaling techniques
like ReNO [18], but through a post-training approach. To clearly delineate these comparisons, we
structure our experiments as follows: We first present an illustrative experiment employing a "redness
reward". This controlled setting is designed to demonstrate the advantages of our training objective,
particularly its ability to optimize for a target reward while mitigating divergence from the base
model’s learned data manifold pbase. Subsequently, we extend our evaluation to more complex and
practical scenarios, focusing on aligning generative models with human-preference reward models.

4.1 Redness Reward
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Figure 4: Trade-off between the redness reward objec-
tive and an image quality metric, ImageReward, for di-
rect fine-tuning and Noise Hypernetworks. As opposed
to direct fine-tuning, our proposed method optimizes
the redness objective while not significantly dropping
image quality as indicated by the ImageReward score.

We begin our evaluation with the goal of
learning the tilted distribution (Equation 3)
given a redness reward. This metric helps
showcase the potential underlying issue of
directly fine-tuning the generation model
gϕ (a fine-tuned variant of the base model
gθ). For this experiment, the redness re-
ward r(x) is defined as the difference be-
tween the red channel intensity and the av-
erage of the green and blue channel inten-
sities: r(x) = x0 − 1

2 (x
1 + x2), where xi

denotes the i-th color channel of the gener-
ated image x and is used to train the recent
SANA-Sprint [11] model, for full details
see Appendix B.1.

The primary concern with directly fine-
tuning gϕ to maximize a reward is the risk
of significant deviation from the original data distribution pbase. This deviation can lead to a high
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Table 1: Quantitative Results on GenEval. Our Noise Hypernetwork combined with (1) SD-
Turbo [77] and (2) SANA-Sprint 0.6B [11], consistently improving results while maintaining 1-step
denoising, fast inference, and minimal memory overhead. Results from ReNO [18] are greyed out to
provide a reference upper-bound in terms of applying optimization at inference.

Model Params (B) Time (s) ↓ Mean ↑ Single↑ Two↑ Counting↑ Colors↑ Position↑ Attribution↑
SD v2.1 [74] 0.8 1.9 0.50 0.98 0.51 0.44 0.85 0.07 0.17
SDXL [68] 2.6 6.9 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DPO-SDXL [92] 2.6 6.9 0.59 0.99 0.84 0.49 0.87 0.13 0.24
Hyper-SDXL [73] 2.6 0.3 0.56 1.00 0.76 0.43 0.87 0.10 0.21
Flux-dev 12.0 23.0 0.68 0.99 0.85 0.74 0.79 0.21 0.48
SD3-Medium [17] 2.0 4.4 0.70 1.00 0.90 0.72 0.87 0.31 0.66

SD-Turbo [77] 0.8 0.2 0.49 0.99 0.51 0.38 0.85 0.07 0.14
+ HyperNoise 1.1 0.3 0.57 0.99 0.65 0.50 0.89 0.14 0.22
+ Prompt Optimization [4, 57] 0.8† 115.0† 0.59 0.99 0.76 0.53 0.88 0.10 0.28
+ Best-of-N [40] 0.8 10.0 0.60 1.00 0.78 0.55 0.88 0.10 0.29
+ ReNO [18] 0.8 20.0 0.63 1.00 0.84 0.60 0.90 0.11 0.36

SANA-Sprint [11] 0.6 0.2 0.70 1.00 0.80 0.64 0.86 0.41 0.51
+ HyperNoise 0.9 0.3 0.75 1.00 0.88 0.71 0.85 0.51 0.55
+ Prompt Optimizatio [4, 57]) 0.6† 115.0† 0.75 0.99 0.91 0.82 0.89 0.36 0.56
+ Best-of-N [40] 0.6 15.0 0.79 0.99 0.92 0.72 0.91 0.53 0.65
+ ReNO [18] 0.6 30.0 0.81 0.99 0.93 0.74 0.92 0.60 0.67

FLUX-schnell (4-step) 12.0 0.7 0.68 0.99 0.88 0.66 0.78 0.27 0.48
+ HyperNoise 13.0 0.9 0.72 0.99 0.93 0.67 0.83 0.30 0.59
+ ReNO [18] 12.0 40.0 0.76 0.99 0.94 0.70 0.86 0.39 0.65

DKL(p
ϕ∥pbase), where pϕ is the distribution induced by the fine-tuned model gϕ. Such a divergence

often manifests as a degradation in overall image quality or a loss of diversity, even if the target reward
(e.g. redness) is achieved. Figure 4 quantitatively illustrates this trade-off by plotting the redness
reward against a general image quality metric (ImageReward), comparing our Noise Hypernetwork
approach with LoRA fine-tuning, while Figure 3 visually corroborates these results.

4.2 Human-preference Reward Models

Implementation Details. We conduct our primary experiments on aligning text-to-image models
with human preferences using SD-Turbo [77], SANA-Sprint [11] and FLUX-Schnell. Notably,
SANA-Sprint and FLUX-Schnell exhibit strong prompt-following capabilities competitive with
proprietary models, making them robust base models for our evaluations. For the reward signal
r(·) essential to our objective (Equation 11) and for the direct fine-tuning baseline, we utilize the
exact same composition of reward models proposed in ReNO [18] consisting of ImageReward [97],
HPSv2.1 [95], Pickscore [44], and a CLIP-score. For the noise hypernetwork, we use a LoRA [31]
module on the base distilled model with the proposed initialization as described in Section 3.2.
Training for the noise hypernetwork is performed using ~70k prompts from Pick-a-Picv2 [44], T2I-
Compbench train set [33], and Attribute Binding (ABC-6K) [21] prompts. Our evaluations of the
trained models are performed on GenEval [22], ensuring that the training and evaluation prompts do
not have any overlap, measuring the generalization of the noise hypernetwork to unseen prompts. We
mainly compare HyperNoise with three different test-time techniques: Best-of-N sampling [40, 55],
ReNO [18], and LLM-based prompt optimization [4, 57]. As detailed in Table 1, all of these incur
significantly increased computational costs at test-time, ranging from 33× to 550× slower inference
compared to HyperNoise, making them impractical for large-scale deployment where efficiency is
paramount. Full experimental details are provided in Appendix B.2.

Quantitative Results. We present our main quantitative results on the GenEval benchmark in Table 1.
Our Noise Hypernetwork training scheme consistently yields significant performance gains across
all model scales while maintaining near-baseline inference costs. When applied to SD-Turbo, our
method nearly recovers most of the improvements from inference-time noise optimization, achieving
an overall GenEval performance of 0.57 that even surpasses SDXL (which has 2× more parameters
and 25× NFEs), clearly highlighting the benefits from our noise hypernetwork training. With SANA-
Sprint, we observe consistent improvements (0.75 vs 0.70) over the base model, achieving the same
performance as LLM-based prompt optimization while being 380× faster, and recovering about half of
the performance gains achieved by ReNO with minimal GPU memory overhead. Notably, we observe
similar trends for the larger 12B parameter FLUX-Schnell, where we again recover substantial
performance gains (0.71 vs 0.68) while maintaining the efficiency advantages that make our approach
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Figure 5: Qualitative comparison our proposed noise hypernetwork with popular distilled models
such as Flux-Schnell, SD3.5-Turbo, SANA-Sprint for 4-step generation. Both SANA-Sprint and
FLUX-Schnell share the initial noise for the base and HyperNoise generation.

practical for real-world deployment. The consistent efficiency gains across model scales demonstrate
that our approach successfully amortizes the optimization cost during training, enabling high-quality
generation without the prohibitive test-time computational overhead of alternative methods.

Table 2: Mean GenEval results for
SANA-Sprint highlighting generaliza-
tion across inference timesteps of our
Noise Hypernetwork and failure of di-
rect LoRA fine-tuning.

SANA-Sprint [11] NFEs GenEval Mean↑
One-step 1 0.70
+ LoRA fine-tune [12, 69, 97] 1 0.67
+ HyperNoise 2 0.75
Two-step 2 0.72
+ LoRA fine-tune [12, 69, 97] 2 0.66
+ HyperNoise 3 0.76
Four-step 4 0.73
+ LoRA fine-tune [12, 69, 97] 4 0.62
+ HyperNoise 5 0.77

Superiority over Direct Fine-tuning and Multi-Step
Generalization. In Tab. 8, we show the generalization of
our training on multi-step inference despite being trained
only with one-step generation. We obtain consistent im-
provements over SANA-Sprint for one, two, and four step
generation. Notably, our model with one-step generation
noticeably outperforms SANA-Sprint with 4 steps. We
also illustrate how direct fine-tuning of the base model
with the same reward objective can lead to significantly
worse results, highlighting the necessity of preventing
"reward-hacking" in a principled fashion. We visualize
this in Appendix C.4, where we observe similar patterns
as previous works for reward-hacking [12, 49, 85].

Qualitative Results. We illustrate examples of generated
images in Fig. 5 showing our method applied to both SANA-Sprint and FLUX-Schnell, alongside
comparisons to SD3.5-Turbo. Our noise hypernetwork demonstrates consistent improvements across
both base models. For SANA-Sprint, the improvements are substantial: we observe both correction of
generation artifacts and significantly enhanced prompt following for complex compositional requests.
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When applied to the already high-quality FLUX-Schnell, our method still provides noticeable im-
provements in detail quality and prompt adherence, demonstrating that our approach can enhance even
strong base models while maintaining the efficiency advantages essential for practical deployment.

5 Related Work

Test-Time Scaling. The paradigm of test-time scaling has yielded remarkable breakthroughs, with
models allocating additional computation during inference to solve increasingly complex problems. In
language models, this has manifested through process reward models [56, 78, 103] and reinforcement
learning from verifiable rewards [45, 60], leading to systems like o1 [36] and DeepSeek-R1 [24].
Beyond scaling denoising steps in diffusion models, test-time techniques improve generation quality
by finding better initial noise or refining intermediate states during inference, often guided by pre-
trained reward models. These methods fall into two categories: search-based approaches [40, 55,
86, 87] that evaluate multiple candidates, and optimization-based approaches [6, 25, 42, 62, 84, 91]
that iteratively refine noise or latents through gradient descent. Although both strategies achieve
significant quality improvements, they introduce substantial computational overhead, with generation
times frequently exceeding several minutes per image.

Aligning Diffusion Models with Rewards. Reward models [44, 95, 96, 97, 101] have been
effectively used to directly fine-tune diffusion models using reinforcement learning [8, 10, 14, 20,
102] or direct reward fine-tuning [12, 15, 37, 46, 49, 69, 70, 97]. Alternatively, Direct Preference
Optimization (DPO) [30, 41, 48, 72, 92] learns from paired comparisons rather than absolute rewards.
A particular instance of reward fine-tuning [15, 83, 85] analyzes learning the reward-tilted distribution
through stochastic optimal control. Uehara et al. [85] fine-tune continuous-time diffusion models by
jointly optimizing both the drift term and initial noise distribution, but their SDE-based formulation
requires continuous-time dynamics and backpropagation through the full sampling process, making it
computationally expensive and inapplicable to step-distilled models. For distilled models, concurrent
work [38, 58, 63] has explored preference tuning, though without the theoretical foundation for
sampling from the target-tilted distribution that our approach provides. Wagenmaker et al. [90] apply
similar noise-space optimization principles to diffusion policies in robotic control, demonstrating
efficient adaptation while preserving pretrained capabilities across diverse domains.

Hypernetworks. Auxiliary models [26] that predict parameters of task-specific models have been
used for vision [2, 27] and language tasks [35, 59, 67]. For generative models, they have been used to
generate weights through diffusion [16, 93] and to speed up personalization [2, 76]. NoiseRefine [1]
and Golden Noise [104] train hypernetworks to predict initial noise to replace classifier-free guidance
or find reliable generations by selecting ’ground-truth’ noise pairs as supervision, as opposed to
the end-to-end training in our framework. Work on diffusion priors [5, 19, 23] also adapts the
noise distribution, but these approaches modify the training process rather than enabling post-hoc
adaptation of pre-trained models. Concurrently, Venkatraman et al. [88] explore sampling from
reward-tilted distributions for arbitrary generators, but our work demonstrates this approach at scale
with comprehensive evaluation across multiple model architectures and unseen prompt distributions.

6 Conclusion

In this work we provide fresh perspective for post-training diffusion models through the introduction
of a noise prediction strategy. Our principled training objective coupled with the efficient training
scheme is able to achieve a meaningful improvements in performance across multiple models while
avoiding ‘reward-hacking‘. We hope that our efficient and effective solution for aligning diffusion
models with downstream objectives finds use across a wide variety of domains and use cases,
especially in cases where test-time optimization would be prohibitively expensive.

Limitations. Preference-tuning diffusion models heavily relies on strong pre-trained base models
and meaningful reward signals. While constant improvements are made to develop better pre-trained
base models, specific focus should be devoted to improving reward models that can give meaningful
feedback on a variety of aspects that are important for high-quality generation.
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Appendix

The Appendix is organized as follows:

• Section A provides all of our theoretical derivations.

• Section B outlines the implementation details.

• Section C presents further quantitative and qualitative analysis.

A Theoretical Derivations

This section provides detailed derivations for the key theoretical results concerning the reward-tilted
noise distribution and the tractable objective we propose. We use the notation established in the main
text, gθ is the pre-trained distilled generator, p0(x0) is the density of the initial noise x0 ∼ N (0, I),
pbase(x) is the density of outputs x = gθ(x0), and r(x) is the scalar reward function. The explicit
density for the standard Gaussian base noise is

p0(x0) =
1

(2π)d/2
exp

(
−1

2
xT
0 x0

)
. (13)

The base generator density pbase(x) is the density of the pushforward measure (gθ)♯P0 (where P0

is the measure for p0(x0)). Formally, (gθ)♯P0 is defined such that for any Borel set A ⊂ Rd,
((gθ)♯P0)(A) = P0(g

−1
θ (A)). The density pbase(x) can be written using the Dirac delta as

pbase(x) := (gθ)♯P0 =

∫
Rd

δ(x− gθ(x0))p0(x0)dx0. (14)

Note that in the main text with abuse of notation we write (gθ)♯p0 instead of (gθ)♯P0. The Kullback-
Leibler (KL) divergence between two densities q(v) and p(v) is

DKL(q∥p) :=
∫
Rd

q(v) log
q(v)

p(v)
dv. (15)

A.1 The Reward-Tilted Distribution

The primary goal is to align the generator with the reward function r(x) by targeting a reward-tilted
output distribution p⋆(x).

Definition: Reward-Tilted Distribution. The target reward-tilted output density p⋆(x) is defined
by upweighting samples from the base generator density pbase(x) according to the reward r(x)

p⋆(x) :=
1

Z⋆
pbase(x)er(x), (16)

where Z⋆ is the normalization constant ensuring p⋆(x) integrates to one

Z⋆ :=

∫
Rd

pbase(x)er(x)dx. (17)

We assume Z⋆ < ∞. We denote P ⋆ as the measure for p⋆.

Objective for Fine-Tuning Generator Parameters. If we aim to fine-tune the generator parameters
from θ to ϕ, leading to a new output density pϕ(x) (when input is from p0(x0)), a standard approach
is to minimize DKL(p

ϕ∥p⋆).
Proposition 2 (KL Objective for Generator Fine-tuning). Minimizing DKL(p

ϕ∥p⋆) with respect to
the generator parameters ϕ is equivalent to minimizing

Jgen(ϕ) = DKL(p
ϕ∥pbase)− Ex∼pϕ [r(x)]. (18)
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Proof. Using the definition of p⋆(x) from Eq. (16):

DKL(p
ϕ∥p⋆) =

∫
Rd

pϕ(x) log
pϕ(x)

p⋆(x)
dx

=

∫
Rd

pϕ(x) log
pϕ(x)Z⋆

pbase(x)er(x)
dx

=

∫
Rd

pϕ(x)

(
log

pϕ(x)

pbase(x)
− r(x) + logZ⋆

)
dx

= DKL(p
ϕ∥pbase)− Ex∼pϕ [r(x)] + logZ⋆.

Since logZ⋆ is a constant with respect to ϕ, minimizing DKL(p
ϕ∥p⋆) is equivalent to minimizing

Jgen(ϕ).

A.2 The Reward-Tilted Noise Distribution

An alternative to modifying the generator gθ is to modify the input noise density p0(x0), while
keeping gθ fixed. We seek an optimal tilted noise density p⋆0(x0) such that its pushforward through
gθ results in the target output density p⋆(x).

Normalization Constant in Noise Space. First, we show that the normalization constant Z⋆ from
Eq. (17) can be expressed as an integral over the noise space. Using Eq. (14) for pbase(x) in the
definition of Z⋆:

Z⋆ =

∫
Rd

er(x)
(∫

Rd

δ(x− gθ(x
′
0))p0(x

′
0)dx

′
0

)
dx

=

∫
Rd

(∫
Rd

er(x)δ(x− gθ(x
′
0))dx

)
p0(x

′
0)dx

′
0 (Fubini’s theorem)

=

∫
Rd

er(gθ(x
′
0))p0(x

′
0)dx

′
0 (Sifting property of δ)

=

∫
Rd

er(gθ(x0))p0(x0)dx0. (19)

Definition: Tilted Noise Distribution. The tilted noise density p⋆0(x0) is defined as:

p⋆0(x0) :=
1

Z⋆
p0(x0) exp[r(gθ(x0))], (20)

where Z⋆ is the same normalization constant defined in Equation 17 as shown in Equation 19.
Theorem 3 (Properties of the Tilted Noise Distribution). Let p⋆0(x0) be the tilted noise density defined
in Equation 20 and P ⋆

0 be the probability measure for p⋆0(x0).

1. Pushforward Identity: The density of the pushforward measure (gθ)♯P
⋆
0 is p⋆(x).

2. KL Projection: The density p⋆0(x0) uniquely minimizes DKL(q0∥p0) among all noise densi-
ties q0(x0) such that if Q0 is the measure for q0, the density of (gθ)♯Q0 is p⋆(x).

Proof. Part 1: Pushforward Identity. Let ppf(x) be the density of (gθ)♯P ⋆
0 . For any bounded,

measurable set A ⊂ Rd:∫
A

ppf(x)dx =

∫
g−1
θ (A)

p⋆0(x0)dx0

=

∫
g−1
θ (A)

1

Z⋆
p0(x0) exp[r(gθ(x0))]dx0.

Using the change of variables for integrals yields∫
g−1
θ (A)

exp[r(gθ(x0))]p0(x0)dx0 =

∫
A

exp[r(x)]pbase(x)dx. (21)
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And thus, we can conclude that∫
A

ppf(x)dx =
1

Z⋆

∫
A

exp[r(x)]pbase(x)dx =

∫
A

p⋆(x)dx. (22)

As this holds for all A ⊂ Rd, the pushforward (gθ)♯P
⋆
0 has density p⋆(x).

Part 2: KL Projection Characterization. Consider minq0 DKL(q0∥p0) subject to the density of
((gθ)♯Q0) being p⋆(x). We introduce a Lagrange multiplier λ : Rd→R (bounded and measurable)
and form the functional

L(q0, λ) = DKL(q0∥p0) +
∫

λ(x)(((gθ)♯Q0)(x)− p⋆(x))dx. (23)

Minimization over q0. Treat λ as fixed and write the KL explicitly, we obtain

L(q0, λ) =
∫

q0(x0)
(
log

q0(x0)

p0(x0)
− λ(gθ(x0))

)
dx0 + const(λ).

Pointwise minimization of the integrand yields the Gibbs form

qλ(x0) ∝ p0(x0) exp
[
−λ(gθ(x0))

]
.

Dual feasibility. Choose λ⋆(x) = −r(x). Plugging this into the expression above gives

qλ⋆(x0) ∝ p0(x0) e
r(gθ(x0)), (24)

which is exactly p⋆0 after normalization by Z⋆. The choice of λ⋆ also annihilates the constraint term
because (gθ)♯P

⋆
0 = P ⋆ as proven in Part 1. Consequently, (q0, λ) = (p⋆0, λ

⋆) is a saddle point of the
Lagrangian, hence p⋆0 attains the minimum of DKL(q0∥p0) under the constraint.

Uniqueness. The KL is strictly convex in its first argument; therefore no other feasible q0 can have
the same objective value. The minimizer is unique. Thus, p⋆0 is the unique minimizer.

Objective for Learning the Tilted Noise Distribution. If we aim to learn a noise density pϕ0 (x0)

(parameterized by ϕ) to approximate p⋆0(x0), we minimize DKL(p
ϕ
0∥p⋆0).

Proposition 4 (KL Objective for Learning Tilted Noise Density). Minimizing DKL(p
ϕ
0∥p⋆0) with

respect to ϕ is equivalent to minimizing

Jnoise(ϕ) = DKL(p
ϕ
0∥p0)− Ex0∼pϕ

0
[r(gθ(x0))]. (25)

Proof. Using p⋆0(x0) =
1
Z⋆ p0(x0) exp[r(gθ(x0))]:

DKL(p
ϕ
0∥p⋆0) =

∫
Rd

pϕ0 (x0) log
pϕ0 (x0)

p⋆0(x0)
dx0

=

∫
Rd

pϕ0 (x0) log
pϕ0 (x0)Z

⋆

p0(x0) exp[r(gθ(x0))]
dx0

=

∫
Rd

pϕ0 (x0)

(
log

pϕ0 (x0)

p0(x0)
− r(gθ(x0)) + logZ⋆

)
dx0

= DKL(p
ϕ
0∥p0)− Ex0∼pϕ

0
[r(gθ(x0))] + logZ⋆.

Since logZ⋆ is constant w.r.t. ϕ, minimizing DKL(p
ϕ
0∥p⋆0) is equivalent to minimizing Jnoise(ϕ).

A.3 Derivation of Tractable KL Divergence for Noise Modification

We aim to derive a tractable expression for the KL term DKL(p
ϕ
0∥p0). Here, p0(x0) is the density

of the initial noise x0 ∼ N (0, I), and pϕ0 is the density of the modified noise x̂0 = Tϕ(x0), where
Tϕ(x0) = x0 + fϕ(x0) is a parametric transformation. We can rewrite the KL as

DKL(p
ϕ
0∥p0) = Ex̂0∼pϕ

0

[
log

pϕ0 (x̂0)

p0(x̂0)

]
= Ex0∼p0

[
log

pϕ0 (Tϕ(x0))

p0(Tϕ(x0))

]
. (26)
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By the change of variables formula, if Tϕ is an invertible differentiable function, the density pϕ0
evaluated at Tϕ(x0) is related to p0(x0) by

pϕ0 (Tϕ(x0)) = p0(x0)|det(JTϕ
(x0))|−1, (27)

where JTϕ
(x0) is the Jacobian matrix of the transformation Tϕ with respect to x0. Substituting

Equation 27 into Equation 26

DKL(p
ϕ
0∥p0) = Ex0∼p0

[
log

p0(x0)|det(JTϕ
(x0))|−1

p0(Tϕ(x0))

]
= Ex0∼p0

[
log p0(x0)− log p0(Tϕ(x0))− log |det(JTϕ

(x0))|
]
. (28)

The Jacobian of this transformation, JTϕ
(x0), is

JTϕ
(x0) =

∂(x0 + fϕ(x0))

∂xT
0

=
∂x0

∂xT
0

+
∂fϕ(x0)

∂xT
0

= I + Jfϕ(x0), (29)

where I is the identity matrix and Jfϕ(x0) is the Jacobian matrix of the function fϕ(x0) with respect
to x0.

Substituting this into Equation 28, then gives

DKL(p
ϕ
0∥p0) = Ex0∼p0

[
log p0(x0)− log p0(x0 + fϕ(x0))− log |det(I + Jfϕ(x0))|

]
. (30)

Simplification of the Log PDF Term. The terms log p0(x0)−log p0(x0+fϕ(x0)) can be simplified
using the definition of p0 such that

log p0(x0)− log p0(x0 + fϕ(x0)) = log

(
1

(2π)d/2
exp

(
− 1

2 |x0|2
)

1
(2π)d/2

exp
(
− 1

2∥x0 + fϕ(x0)∥2
))

= log

(
exp

(
−1

2
∥x0∥2 +

1

2
∥x0 + fϕ(x0)∥2

))
= −1

2
∥x0∥2 +

1

2
∥x0 + fϕ(x0)∥2

=
1

2

(
(x0 + fϕ(x0))

T (x0 + fϕ(x0))− xT
0 x0

)
= xT

0 fϕ(x0) +
1

2
∥fϕ(x0)∥2. (31)

Substituting Equation 31 back into Equation 30 then gives

DKL(p
ϕ
0∥p0) = Ex0∼N (0,I)

[
xT
0 fϕ(x0) +

1

2
∥fϕ(x0)∥2 − log |det(I + Jfϕ(x0))|

]
. (32)

Application of Stein’s Lemma. Assume that the regularity conditions of Stein’s Lemma hold for
fϕ(·). Then, Stein’s Lemma gives

Ex0∼N (0,I)[x
T
0 fϕ(x0)] = Ex0∼N (0,I)[Tr(I · Jfϕ(x0))] = Ex0∼N (0,I)[Tr(Jfϕ(x0))]. (33)

Substituting Equation 33 into Equation 32, we obtain

DKL(p
ϕ
0 |p0) = Ex0∼N (0,I)

[
Tr(Jfϕ(x0)) +

1

2
∥fϕ(x0)∥2 − log |det(I + Jfϕ(x0))|

]
. (34)

Approximation of Log-Determinant Term The term log |det(I + Jfϕ(x0))| in Equation 34
can be computationally challenging. We show that we can approximate it under the assumption
that fϕ(x0) represents a "small" modification to x0, implying that its Jacobian Jfϕ(x0) has small
eigenvalues.

Theorem 1. Let A = Jfϕ(x0) be the d× d Jacobian matrix of fϕ(x0) with respect to x0. Assume
fϕ is L-Lipschitz continuous, such that its Lipschitz constant L < 1. This implies that the spectral
radius of its Jacobian, ρ(A) ≤ L < 1. Then, the error term E(A) = Tr(A) − log |det(I + A)| is
bounded by

|E(A)| ≤ d(− log(1− L)− L).
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Proof. The function fϕ is assumed to be L-Lipschitz continuous with L < 1. This implies that the
spectral norm of its Jacobian, ∥A∥2 = ∥Jfϕ(x0)∥2 ≤ L. This condition (L < 1) is not only crucial
for bounding the error term E(A) in the log-determinant approximation as derived below, but it also
fundamentally ensures that the transformation Tθ(x0) = x0 + fθ(x0) is a global diffeomorphism.
Consequently, provided fϕ is continuously differentiable, Tθ is invertible, thereby satisfying the
prerequisite for the application of the change of variables formula stated in Equation 27. The spectral
radius ρ(A) of A is bounded by its spectral norm ρ(A) ≤ ∥A∥2. Thus, ρ(A) ≤ L < 1. Since
ρ(A) < 1, all eigenvalues λi(A) of A satisfy |λi(A)| < 1. This ensures that 1 + λi(A) has a
positive real part for all eigenvalues. Consequently, det(I+A) =

∏
i(1+λi(A)) is real and positive.

Therefore, we can write log |det(I +A)| = log det(I +A).

Under the condition ρ(A) < 1, we have the series expansion for the log-determinant is

log det(I +A) = Tr(A)− 1

2
Tr(A2) +

1

3
Tr(A3)− · · · =

∞∑
k=1

(−1)k−1

k
Tr(Ak). (35)

Substituting this into the definition of the error term E(A) gives

E(A) = Tr(A)−
(

Tr(A)− 1

2
Tr(A2) +

1

3
Tr(A3)− . . .

)
=

1

2
Tr(A2)− 1

3
Tr(A3) +

1

4
Tr(A4)− . . .

=

∞∑
k=2

(−1)k

k
Tr(Ak). (36)

To bound the magnitude of this error term, we take the absolute value

|E(A)| =
∣∣∣∣∣
∞∑
k=2

(−1)k

k
Tr(Ak)

∣∣∣∣∣ ≤
∞∑
k=2

|Tr(Ak)|
k

. (37)

The trace of Ak is the sum of the k-th powers of the eigenvalues of A such that Tr(Ak) =∑d
i=1 λi(A)k. Therefore, |Tr(Ak)| =

∣∣∣∑d
i=1 λi(A)k

∣∣∣ ≤∑d
i=1 |λi(A)|k. Since |λi(A)| ≤ ρ(A) for

all i = 1, . . . , d, we have

|Tr(Ak)| ≤
d∑

i=1

ρ(A)k = d · ρ(A)k. (38)

Substituting this bound into Equation(37) gives

|E(A)| ≤
∞∑
k=2

d · ρ(A)k

k
= d

∞∑
k=2

ρ(A)k

k
. (39)

We use the known Taylor series identity for |x| < 1

− log(1− x) = x+
x2

2
+

x3

3
+ · · · =

∞∑
k=1

xk

k
.

Therefore,
∞∑
k=2

xk

k
=

( ∞∑
k=1

xk

k

)
− x = − log(1− x)− x. (40)

Since we have established that ρ(A) ≤ L < 1, this series converges. Substituting ρ(A) into
Equation (39) we obtain

|E(A)| ≤ d(− log(1− ρ(A))− ρ(A)). (41)
Finally, using the assumption that fϕ is L-Lipschitz with L < 1, we have ρ(A) ≤ L. Since the
function g(x) = − log(1 − x) − x is non-decreasing for x ∈ [0, 1), we can replace ρ(A) with its
upper bound L such that

|E(A)| ≤ d(− log(1− L)− L). (42)
This completes the proof of Theorem 1.
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Support for the Lipschitz Assumption. The approximation in Equation 10 is predicated on fϕ
having a small Lipschitz constant L. This is supported through our proposed initialization that sets
fϕ(·) = 0 at the start of training. This implies that its Jacobian is Jfϕ(·) ≈ 0. And through our
regularization objective (Equation 11), which inherently includes Ex0∼p0

[ 12∥fϕ(x0)∥2] penalizing
large perturbations. This encourages fϕ to learn small magnitude transformations, helping maintain a
small effective L. While these practical measures do not strictly enforce L < 1 throughout training
without specialized techniques, they help maintain fϕ in a regime where our proposed approximation
is reasonable.

B Experimental and Implementation Details

In this Section we report the details for all of our experimental results. We mainly use the SANA-
Sprint 0.6B [11] model, and train it using one-step generation. Additionally, we use the default
guidance scale of 4.5 for all experiments. After training, we evaluate our models using different
amounts of NFEs with one forward pass of Noise Hypernetwork beforehand.

Initialization As described in Section 3.2, we initialize the noise network to output fϕ(·) = 0)
at the start of training. We implement this by setting the output of the last base layer to 0 and
initializing the LoRA weights of the second LoRA weight matrix (also reffered to as B) to 0. This
effectively initializes fϕ(·) = 0). For a stable training, this initialization is important as the model
gθ(fϕ(x0) + x0)) generates meaningful images at the start of training. In that way fϕ only needs to
learn how to refine x0.

Memory efficient implementation. Section 3.2, we train our noise hypernetwork fϕ as a special
LoRA version of our base model gθ, which ignores the last layer of the base model. As visualized in
Figure 2, we only need to keep the base model in memory once. Thus, the GPU memory overhead is
just the added LoRA weights ϕ. Additionally, we employ Pytorch Memsave [7] to all models, which
further reduces the needed GPU memory during training enabling us to use larger batch sizes.

B.1 Redness Reward

For the Redness Reward, we use SANA-Sprint 0.6B [11] as the base model. We train the model with
the redness reward

r(x) = 1
100 ∗ (x0 − 1

2
(x1 + x2)),

where xi denotes the i-th color channel of x. We use the same amount of LoRA parameters for
fine-tuning and noise hypernetwork training. In general, we keep the hyperparameters for our
comparison between fine-tuning and noise hypernetwork training exactly the same. Due to the sake of
illustration, we lower the learning rate for fine-tuning in this case as otherwise the model collapses to
generating pure red images after a few training steps. We train on 30 prompts from the GenEval [22]
promptset and evaluate on the four unseen prompts ["A photo of a parrot", "A photo of
a dolphin", "A photo of a train", "A photo of a car"]. After each epoch on the 30
prompts, we compute the redness reward as well as an "imageness score" for each of the 4 evaluation
prompts and average. For the imageness score, we use the ImageReward [97] human-preference
reward model as it was shown to correctly quantify prompt-following capabilities. We provide the
full hyperparameters in Table 3. This experiment was conducted on 1 H100 GPU.

B.2 Human Preference Reward Models

For our large-scale experiments, we consider SD-Turbo [77] and SANA-Sprint [11] as our two base
models. For SD-Turbo we generate images in 512× 512 while for SANA-Sprint we generate them
of size 1024 × 1024. The training for the noise hypernetwork is done using ~70k prompts from
Pick-a-Picv2 [44], T2I-Compbench train set [33], and Attribute Binding (ABC-6K) [21] prompts. As
the reward we follow ReNO [18] and use a combination of human-preference trained reward models
consisting of ImageReward [97], HPSv2.1 [95], PickScore [44], and CLIP-Score [34]. To balance
these, we weigh each reward model with the same weightings as proposed in ReNO [18] and employ
them with the following implementation details. All training runs were conducted on 6 H100 GPUs.
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Table 3: Hyperparameters for the Redness Reward setting

Fine-tuning Noise Hypernetwork

Model SANA-Sprint [11] SANA-Sprint [11]
Learning rate 1e− 4 1e− 3
GradNorm Clipping 1.0 1.0
LoRA rank 128 128
LoRA alpha 256 256
Optimizer SGD SGD
Batch size 3 3
Training epochs 200 200
Number of training prompts 30 30
Image size 1024× 1024 1024× 1024

Human Preference Score v2.1 (HPSv2.1) HPSv2.1 [95] is an improved version of the HPS [96]
model, which uses an OpenCLIP ViT-H/14 model and is trained on prompts collected from Diffu-
sionDB [94] and other sources.

PickScore PickScore also uses the same ViT-H/14 model, however is trained on the Pick-a-Pic
dataset which consists of 500k+ preferences that are collected through crowd-sourced prompts and
comparisons.

ImageReward ImageReward [97] trains a MLP over the features extracted from a BLIP model [47].
This is trained on a dataset of images collected from the DiffusionDB [94] prompts.

CLIPScore Lastly, we use CLIPScore [28, 71], which was not designed specifically as a human
preference reward model. However, it measures the text-image alignment with a score between 0
and 1. Thus, it offers a way of evaluating the prompt faithfulness of the generated image that can be
optimized. We use the model provided by OpenCLIP [34] with a ViT-H/14 backbone.

Table 4: Hyperparameters for the Human-preference Reward setting

Noise Hypernetwork Fine-tuning Noise Hypernetwork

Model SD-Turbo [77] SANA-Sprint [11] SANA-Sprint [11]
Learning rate 1e− 3 1e− 3 1e− 3
GradNorm Clipping 1.0 1.0 1.0
LoRA rank 128 128 128
LoRA alpha 256 256 256
Optimizer SGD SGD SGD
Batch size 48 18 18
Accumulation Steps 1 3 3
Training Epochs ≈ 25 ≈ 25 ≈ 25
Number of training prompts ≈ 70k ≈ 70k ≈ 70k
Image size 512× 512 1024× 1024 1024× 1024

GenEval Our main evaluation metric is GenEval, an object-focused framework introduced by
Ghosh et al. [22] for evaluating the alignment between text prompts and generated images from
Text-to-Image (T2I) models. GenEval leverages existing object detection methods to perform a
fine-grained, instance-level analysis of compositional capabilities. The framework assesses various
aspects of image generation, including object co-occurrence, position, count, and color. By linking
the object detection pipeline with other discriminative vision models, GenEval can further verify
properties like object color. All the metrics on the GenEval benchmarks are evaluated using a
MaskFormer object detection model with a Swin Transformer [53] backbone. Lastly, GenEval is
evaluated over four seeds and reports the mean for each metric, which we follow.
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C Additional results

C.1 Additional Benchmarks

Here, we report further results on two more benchmarks commonly employed in the evaluation of
T2I generation. Note that again, none of the prompts in the used benchmarks are part of the training
data, showcasing the generalizability of the Noise Hypernetwork to unseen prompts and also that
our optimization objective through human-preference reward mdoels is disentangled from these
benchmarks.

Table 5: Quantitative Results on T2I-CompBench. The
Noise Hypernetwork consistently improves performance.

SANA-Sprint 0.6B [11] NFEs Color ↑ Shape↑ Texture↑
One-step 1 0.72 0.49 0.63
+ Noise Hypernetwork 2 0.75 0.53 0.64
Two-step 2 0.73 0.50 0.64
+ Noise Hypernetwork 3 0.76 0.53 0.64

Four-step 4 0.73 0.50 0.64
+ Noise Hypernetwork 5 0.76 0.54 0.65

T2I-CompBench. T2I-
CompBench is a comprehensive
benchmark proposed by Park et al.
[66] for evaluating the composi-
tional capabilities of text-to-image
generation models. We evaluate on
the Attribute binding tasks, which
includes color, shape, and texture
sub-categories, where the model
should bind the attributes with the
correct objects to generate the complex scene. The attribute binding subtasks are evaluated using
BLIP-VQA (i.e., generating questions based on the prompt and applying VQA on the generated
image). We perform these evaluations on the validation set of prompts and results are shown in Tab. 5
and observe consistent improvements across steps and categories.

Table 6: DPG-Bench results for SANA-Sprint high-
lighting generalization across inference timesteps of our
Noise Hypernetwork.

SANA-Sprint 0.6B [11] NFEs DPG-Bench Score↑
One-step 1 77.59
+ Noise Hypernetwork 2 79.20
Two-step 2 79.07
+ Noise Hypernetwork 3 79.74
Four-step 4 79.54
+ Noise Hypernetwork 5 80.82

DPG-Bench. We provide results on
DPG-Bench [32] in Tab. 6. Broadly,
while performance increases for all mod-
els with increasing timesteps, we note that
the results for the four step SANA-Sprint
model is nearly matched by the one-step
model with our noise hypernetwork. We
also note that the DPG-Bench score of
80.82 surpasses powerful models such as
SDXL [68], Pixart-Σ, and is only surpassed
by much larger models such as SD3 [17],
and Flux. Finally, we also note that the
human-preference reward models that we
utilize all have a CLIP/BLIP encoder that
limits the length of the captions to < 77 tokens, which offers minimal scope of improvements
for benchmarks involving much longer prompts that exceed this context window. Future reward
models that either utilize different CLIP models (e.g. Long-CLIP [98]) or LLM-based decoders (e.g.
VQAScore [50]) would enable improving prompt following of these models more dramatically in the
case of long prompts.

C.2 Diversity Analysis

Table 7: We measure the average LPIPS and DINO
similarity scores over images generated for 50 different
seeds for the 553 prompts from GenEval.

LPIPS ↑ DINO ↓
SANA-Sprint 0.608 ±0.074 0.780 ±0.103

+ Noise HyperNetwork 0.592 ±0.059 0.825 ±0.090

We also investigate the impact of the di-
versity of the generated outputs as the re-
sult of our hypernetwork. For this pur-
pose, we generate 50 images by varying the
seed from the 553 prompts of the GenEval
benchmark. The average similarity of dif-
ferent images for the same prompt are mea-
sured using similarities from LPIPS [100]
and DINOv2 [64] embeddings. The results
in Tab. 7 indicate that the noise hypernetwork does not cause any collapse due to “reward-hacking”
and broadly, the diversity of the generated images is in the same ballpark as the base model.
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C.3 Multi-step analysis

Table 8: Mean GenEval results for SANA-Sprint high-
lighting generalization across inference timesteps of our
Noise Hypernetwork.

SANA-Sprint [11] NFEs GenEval Mean↑
One-step 1 0.70
+ Direct fine-tune [69] 1 0.67
+ Noise Hypernetwork 2 0.75
Two-step 2 0.72
+ Direct fine-tune [69] 2 0.66
+ Noise Hypernetwork 3 0.76
Four-step 4 0.73
+ Direct fine-tune [69] 4 0.62
+ Noise Hypernetwork 5 0.77
Eight-step 8 0.74
+ Noise Hypernetwork 9 0.76
Sixteen-step 16 0.73
+ Noise Hypernetwork 17 0.75
Thirty-two-step 32 0.71
+ Noise Hypernetwork 33 0.72

Here, in addition to the main text Table 9,
we analyze the behavior of Noise Hyper-
networks when moving beyond the few-
step regime of 1 − 4 steps. Remarkably,
even when going up to 32 inference steps,
we find that Noise Hypernetworks trained
with the one-step generator, improve per-
formance. We find that as we increase
the NFEs, the added performance boost
of the Noise Hypernetwork reduces. How-
ever, note that the underlying model SANA-
sprint [11] was not trained to be used in
the multi-step regime, but specifically for
few-step generation.

C.4 Challenges
with Direct Fine-tuning

We also qualitatively illustrate the prob-
lems with directly fine-tuning diffusion
models on differentiable rewards in Fig-
ure 6. As visualized, there are drastic arti-
facts introduced on the image which play
a huge role in improving the reward scores.
These artfiacts are very similar to the ones noticed in several works [12, 37, 49] and require the
development of several regularization strategies to address these issues. However as explained in
Section 2, in the few-step regime the KL regularization term to the base model is difficult to be made
tractable and thus, to the best of our knowledge there exists no theoretical grounded approach to
learn the reward tilted distribution (Equation 3) with a one-step generator. The Noise Hypernework
strategy on the other hand, ensures that the images remain in the original data distribution with its
principled regularization.

C.5 LoRA Rank analysis

C.6 Qualitative Results

We provide additional qualitative samples for the base SANA-Sprint result along with the generation
with our proposed noise hypernetwork in Figures 6 and 7. We broadly observe improved prompt
following as well as superior visual quality in the generated images.

25



Table 9: Mean GenEval results for SANA-Sprint highlighting generalization across inference
timesteps of our Noise Hypernetwork and failure of direct LoRA fine-tuning.

SANA-Sprint [11] NFEs GenEval Mean↑
One-step 1 0.70

LoRA-Rank 128
+ LoRA fine-tune 1 0.67
+ HyperNoise 2 0.75
LoRA-Rank 64
+ LoRA fine-tune 1 0.68
+ HyperNoise 2 0.75
LoRA-Rank 16
+ LoRA fine-tune 1 0.65
+ HyperNoise 2 0.71

LoRA-Rank 8
+ LoRA fine-tune 1 0.59
+ HyperNoise 2 0.70

Two-step 2 0.72
+ LoRA fine-tune [12, 69] 2 0.66
+ HyperNoise 3 0.76
Four-step 4 0.73
+ LoRA fine-tune [12, 69] 4 0.62
+ HyperNoise 5 0.77
+ HyperNoise (LoRA-Rank=64) 5 0.76
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+ Noise 
HypernetworkSANA-Sprint

"A red dog and 
a green cat"

"A blue car and 
an orange train"

+ LoRA 
Fine-tune

"A majestic eagle 
soaring over snow-
capped mountains at 
sunset, dramatic 
clouds in the 
background"

"A cozy coffee shop 
interior with warm 
lighting, vintage 

books on shelves, and 
steam rising from a 

cappuccino"

"A cozy reading nook 
with a velvet 
armchair, soft 

blanket, stack of 
books, and rain 

against the window"

Figure 6: Examples of artifacts introduced by directly Direct Fine-tuning diffusion models on
rewards [12, 49, 69] for the same reward objective in comparison to Noise Hypernetwork training
with same initial noise.
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+ Noise 
HypernetworkSANA-Sprint

"A waterfall crashing onto 
stones, below a rainbow, 

with colorful mist"

"Guests watching the 
Northern lights dancing 

above an ice hotel"

"An epic oil painting: 
silver knights charging 
across mud, red banners 
waving, fiery eclipse 
overhead, stone castle 

on cliffs"

Figure 7: More qualitative results on the human-preference reward setting. Base SANA-Sprint
compared to Noise Hypernetwork with same initial noise.
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